Search results
Results from the WOW.Com Content Network
Nd:YAG (neodymium-doped yttrium aluminum garnet; Nd:Y 3 Al 5 O 12) is a crystal that is used as a lasing medium for solid-state lasers. The dopant , neodymium in the +3 oxidation state, Nd(III), typically replaces a small fraction (1%) of the yttrium ions in the host crystal structure of the yttrium aluminum garnet (YAG), since the two ions are ...
Because of the narrow 885-nm absorption feature in Nd:YAG, certain systems may benefit from the use of wavelength-locked diode pump sources, which serve to narrow and stabilize the pump emission spectrum to keep it closely aligned to this absorption feature.
Neodymium-doped yttrium calcium oxoborate Nd:Y Ca 4 O(BO 3) 3 or simply Nd:YCOB ~1.060 μm (~530 nm at second harmonic) laser diode Nd:YCOB is a so-called "self-frequency doubling" or SFD laser material which is both capable of lasing and which has nonlinear characteristics suitable for second harmonic generation. Such materials have the ...
In the same year Nakazawa and Tokuda reported using the two transitions in Nd:YAG at 1.32 and 1.34 μm to pump a multimode fibre simultaneously at these wavelengths. They attributed the continuum spectrum to a combination of forced four-wave mixing and a superposition of sequential stimulated Raman scattering. The main advantage of this was ...
Laser rods (from left to right): Ruby, Alexandrite, Er:YAG, Nd:YAG The active laser medium (also called a gain medium or lasing medium ) is the source of optical gain within a laser . The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a higher energy state previously ...
A Ti:sapphire laser is usually pumped with another laser with a wavelength of 514 to 532 nm, for which argon-ion lasers (514.5 nm) and frequency-doubled Nd:YAG, Nd:YLF, and Nd:YVO lasers (527–532 nm) are used. They are capable of laser operation from 670 nm to 1,100 nm wavelength. [2]
Typical hosts include YAG (yttrium aluminium garnet), YLF (yttrium lithium fluoride), sapphire (aluminium oxide) and various glasses. Examples of solid-state laser media include Nd:YAG, Ti:sapphire, Cr:sapphire (usually known as ruby), Cr:LiSAF (chromium-doped lithium strontium aluminium fluoride), Er:YLF, Nd:glass, and Er:glass. Solid-state ...
The pump pulse is typically in the UV region and is often generated by a high-powered Nd:YAG laser, whereas the probe beam is in the infrared region. This technique currently operates down to the picosecond time regime and surpasses transient absorption and emission spectroscopy by providing structural information on the excited-state kinetics ...