enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The analog formula to the above generalization of Euler's formula for Pauli matrices, the group element in terms of spin matrices, is tractable, but less simple. [7] Also useful in the quantum mechanics of multiparticle systems, the general Pauli group G n is defined to consist of all n-fold tensor products of Pauli matrices.

  3. Generalizations of Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_Pauli...

    The traditional Pauli matrices are the matrix representation of the () Lie algebra generators , , and in the 2-dimensional irreducible representation of SU(2), corresponding to a spin-1/2 particle. These generate the Lie group SU(2) .

  4. Pauli equation - Wikipedia

    en.wikipedia.org/wiki/Pauli_equation

    The Hamiltonian operator is a 2 × 2 matrix because of the Pauli operators. ^ = [(^)] + Substitution into the Schrödinger equation gives the Pauli equation. This Hamiltonian is similar to the classical Hamiltonian for a charged particle interacting with an electromagnetic field.

  5. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    There were some precursors to Cartan's work with 2×2 complex matrices: Wolfgang Pauli had used these matrices so intensively that elements of a certain basis of a four-dimensional subspace are called Pauli matrices σ i, so that the Hermitian matrix is written as a Pauli vector. [2] In the mid 19th century the algebraic operations of this algebra of four complex dimensions were studied as ...

  6. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    Also useful in the quantum mechanics of multiparticle systems, the general Pauli group G n is defined to consist of all n-fold tensor products of Pauli matrices. The analog formula of Euler's formula in terms of the Pauli matrices ^ (, ^) = ^ = ⁡ + (^) ⁡ for higher spins is tractable, but less simple.

  7. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    the matrix exponential reduces to a plain product of the exponentials of the two respective pieces. This is a formula often used in physics, as it amounts to the analog of Euler's formula for Pauli spin matrices, that is rotations of the doublet representation of the group SU(2).

  8. Measurement in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Measurement_in_quantum...

    The Pauli matrices are traceless and orthogonal to one another with respect to the Hilbert–Schmidt inner product, and so the coordinates (,,) of the state are the expectation values of the three von Neumann measurements defined by the Pauli matrices.

  9. Pauli group - Wikipedia

    en.wikipedia.org/wiki/Pauli_group

    The Pauli group is generated by the Pauli matrices, and like them it is named after Wolfgang Pauli. The Pauli group on n {\displaystyle n} qubits, G n {\displaystyle G_{n}} , is the group generated by the operators described above applied to each of n {\displaystyle n} qubits in the tensor product Hilbert space ( C 2 ) ⊗ n {\displaystyle ...