Search results
Results from the WOW.Com Content Network
The analog formula to the above generalization of Euler's formula for Pauli matrices, the group element in terms of spin matrices, is tractable, but less simple. [ 7 ] Also useful in the quantum mechanics of multiparticle systems, the general Pauli group G n is defined to consist of all n -fold tensor products of Pauli matrices.
The term spin matrix refers to a number of matrices, which are related to Spin ... Pauli matrices, also called the "Pauli spin matrices". Generalizations of Pauli ...
Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain a spin matrix for spin in the direction of the unit vector. The eigenvectors of that spin matrix are the spinors for spin-1/2 oriented in the direction given by the vector. Example: u = (0.8, -0.6, 0) is a unit vector ...
In 1927, Pauli formalized the theory of spin using the theory of quantum mechanics invented by Erwin Schrödinger and Werner Heisenberg. He pioneered the use of Pauli matrices as a representation of the spin operators and introduced a two-component spinor wave-function. Pauli's theory of spin was non-relativistic.
The traditional Pauli matrices are the matrix representation of the () Lie algebra generators , , and in the 2-dimensional irreducible representation of SU(2), corresponding to a spin-1/2 particle. These generate the Lie group SU(2) .
Pauli introduced the 2×2 Pauli matrices as a basis of spin operators, thus solving the nonrelativistic theory of spin. This work, including the Pauli equation , is sometimes said to have influenced Paul Dirac in his creation of the Dirac equation for the relativistic electron, though Dirac said that he invented these same matrices himself ...
For a nonrelativistic spin-1/2 particle of mass m, a representation of the time-independent Lévy-Leblond equation reads: [1] {+ = + =where c is the speed of light, E is the nonrelativistic particle energy, = is the momentum operator, and = (,,) is the vector of Pauli matrices, which is proportional to the spin operator =.
In three Euclidean dimensions, for instance, the Pauli spin matrices are a set of gamma matrices, [i] and the two-component complex column vectors on which these matrices act are spinors. However, the particular matrix representation of the Clifford algebra, hence what precisely constitutes a "column vector" (or spinor), involves the choice of ...