enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once

  3. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path.

  4. Path (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Path_(graph_theory)

    A three-dimensional hypercube graph showing a Hamiltonian path in red, and a longest induced path in bold black. In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).

  5. Seven Bridges of Königsberg - Wikipedia

    en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

    Since the graph corresponding to historical Königsberg has four nodes of odd degree, it cannot have an Eulerian path. An alternative form of the problem asks for a path that traverses all bridges and also has the same starting and ending point. Such a walk is called an Eulerian circuit or an Euler tour. Such a circuit exists if, and only if ...

  6. Handshaking lemma - Wikipedia

    en.wikipedia.org/wiki/Handshaking_lemma

    Euler stated the fundamental results for this problem in terms of the number of odd vertices in the graph, which the handshaking lemma restricts to be an even number. If this number is zero, an Euler tour exists, and if it is two, an Euler path exists. Otherwise, the problem cannot be solved.

  7. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    A path (,,,) is a stationary point of (and hence is an equation of motion) if and only if the path ((), ()) in phase space coordinates obeys the Hamilton's equations. Basic physical interpretation [ edit ]

  8. Knight's tour - Wikipedia

    en.wikipedia.org/wiki/Knight's_tour

    Knight's graph showing all possible paths for a knight's tour on a standard 8 × 8 chessboard. The numbers on each node indicate the number of possible moves that can be made from that position. The knight's tour problem is an instance of the more general Hamiltonian path problem in graph theory.

  9. Icosian game - Wikipedia

    en.wikipedia.org/wiki/Icosian_game

    William Rowan Hamilton, the inventor of the icosian game. At the time of his invention of the icosian game, William Rowan Hamilton was the Andrews Professor of Astronomy at Trinity College Dublin and Royal Astronomer of Ireland, and was already famous for his work on Hamiltonian mechanics and his invention of quaternions. [9]