Search results
Results from the WOW.Com Content Network
Written as a reduction, cathodic current is positive. The net current density is the difference between the cathodic and anodic current density. Exchange current densities reflect intrinsic rates of electron transfer between an analyte and the electrode. Such rates provide insights into the structure and bonding in the analyte and the electrode.
Elimination reaction of cyclohexanol to cyclohexene with sulfuric acid and heat [1] An elimination reaction is a type of organic reaction in which two substituents are removed from a molecule in either a one- or two-step mechanism. [2] The one-step mechanism is known as the E2 reaction, and the two-step mechanism is known as the E1 reaction ...
In theoretical chemistry, Marcus theory is a theory originally developed by Rudolph A. Marcus, starting in 1956, to explain the rates of electron transfer reactions – the rate at which an electron can move or jump from one chemical species (called the electron donor) to another (called the electron acceptor). [1]
where k f and k b are the reaction rate constants, with units of frequency (1/time) and c o and c r are the surface concentrations (mol/area) of the oxidized and reduced molecules, respectively (written as c o (0,t) and c r (0,t) in the previous section). The net rate of reaction v and net current density j are then: [Note 2]
The reactivity series is sometimes quoted in the strict reverse order of standard electrode potentials, when it is also known as the "electrochemical series". [8] The following list includes the metallic elements of the first six periods. It is mostly based on tables provided by NIST.
Electrochemical kinetics is the field of electrochemistry that studies the rate of electrochemical processes. This includes the study of how process conditions, such as concentration and electric potential, influence the rate of oxidation and reduction reactions that occur at the surface of an electrode, as well as an investigation into electrochemical reaction mechanisms.
Charge transfer coefficient, and symmetry factor (symbols α and β, respectively) are two related parameters used in description of the kinetics of electrochemical reactions. They appear in the Butler–Volmer equation and related expressions. The symmetry factor and the charge transfer coefficient are dimensionless. [1]
In most cases electron transfer can be assumed to be much faster than the chemical reactions. Unlike stoichiometric reactions where the steps between the starting materials and the rate limiting step dominate, in catalysis the observed reaction order is usually dominated by the steps between the catalytic resting state and the rate limiting step.