enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    "Stirling_formula", Encyclopedia of Mathematics, EMS Press, 2001 [1994] Peter Luschny, Approximation formulas for the factorial function n! Weisstein, Eric W., "Stirling's Approximation", MathWorld; Stirling's approximation at PlanetMath

  3. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The word "factorial" (originally French: factorielle) was first used in 1800 by Louis François Antoine Arbogast, [18] in the first work on Faà di Bruno's formula, [19] but referring to a more general concept of products of arithmetic progressions. The "factors" that this name refers to are the terms of the product formula for the factorial. [20]

  4. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  5. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    In mathematics, the gamma function (represented by Γ, capital Greek letter gamma) is the most common extension of the factorial function to complex numbers.Derived by Daniel Bernoulli, the gamma function () is defined for all complex numbers except non-positive integers, and for every positive integer =, () = ()!.

  6. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    In the same way that the double factorial generalizes the notion of the single factorial, the following definition of the integer-valued multiple factorial functions (multifactorials), or α-factorial functions, extends the notion of the double factorial function for positive integers : ! = {()!

  7. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    The rising factorial is also integral to the definition of the hypergeometric function: The hypergeometric function is defined for | | < by the power series (,;;) = = () ()! provided that ,,, …. Note, however, that the hypergeometric function literature typically uses the notation ( a ) n {\displaystyle (a)_{n}} for rising factorials.

  8. Factorial experiment - Wikipedia

    en.wikipedia.org/wiki/Factorial_experiment

    Factorial experiments are described by two things: the number of factors, and the number of levels of each factor. For example, a 2×3 factorial experiment has two factors, the first at 2 levels and the second at 3 levels. Such an experiment has 2×3=6 treatment combinations or cells.

  9. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    In mathematics, Legendre's formula gives an expression for the exponent of the largest power of a prime p that divides the factorial n!. It is named after Adrien-Marie Legendre . It is also sometimes known as de Polignac's formula , after Alphonse de Polignac .