Search results
Results from the WOW.Com Content Network
Figure 1B: Low-pass filter (1st-order, one-pole) Bode magnitude plot (top) and Bode phase plot (bottom). The red data curve is approximated by the straight black line. In electrical engineering and control theory, a Bode plot is a graph of the frequency response of a system.
Bode's sensitivity integral, discovered by Hendrik Wade Bode, is a formula that quantifies some of the limitations in feedback control of linear parameter invariant systems. Let L be the loop transfer function and S be the sensitivity function .
Hendrik Wade Bode (/ ˈ b oʊ d i / BOH-dee, Dutch:; [1] December 24, 1905 – June 21, 1982) [1] was an American engineer, researcher, inventor, author and scientist, of Dutch ancestry. As a pioneer of modern control theory and electronic telecommunications he revolutionized both the content and methodology of his chosen fields of research.
A generalization of the Smith chart to a three dimensional sphere, based on the extended complex plane (Riemann sphere) and inversive geometry, was proposed by Muller, et al in 2011. [ 26 ] The chart unifies the passive and active circuit design on little and big circles on the surface of a unit sphere, using a stereographic conformal map of ...
The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...
The center of mass of a body with an axis of symmetry and constant density must lie on this axis. Thus, the center of mass of a circular cylinder of constant density has its center of mass on the axis of the cylinder. In the same way, the center of mass of a spherically symmetric body of constant density is at the center of the sphere.
Stereographic projection of the unit sphere from the north pole onto the plane z = 0, shown here in cross section. The unit sphere S 2 in three-dimensional space R 3 is the set of points (x, y, z) such that x 2 + y 2 + z 2 = 1.
A pole-zero plot shows the location in the complex plane of the poles and zeros of the transfer function of a dynamic system, such as a controller, compensator, sensor, equalizer, filter, or communications channel. By convention, the poles of the system are indicated in the plot by an X while the zeros are indicated by a circle or O.