enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The log-likelihood function being plotted is used in the computation of the score (the gradient of the log-likelihood) and Fisher information (the curvature of the log-likelihood). Thus, the graph has a direct interpretation in the context of maximum likelihood estimation and likelihood-ratio tests.

  3. Log-logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Log-logistic_distribution

    Another generalized log-logistic distribution is the log-transform of the metalog distribution, in which power series expansions in terms of are substituted for logistic distribution parameters and . The resulting log-metalog distribution is highly shape flexible, has simple closed form PDF and quantile function , can be fit to data with linear ...

  4. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    We can derive the value of the G-test from the log-likelihood ratio test where the underlying model is a multinomial model. Suppose we had a sample x = ( x 1 , … , x m ) {\textstyle x=(x_{1},\ldots ,x_{m})} where each x i {\textstyle x_{i}} is the number of times that an object of type i {\textstyle i} was observed.

  5. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    For logistic regression, the measure of goodness-of-fit is the likelihood function L, or its logarithm, the log-likelihood ℓ. The likelihood function L is analogous to the ε 2 {\displaystyle \varepsilon ^{2}} in the linear regression case, except that the likelihood is maximized rather than minimized.

  6. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    Log-linear analysis is a technique used in statistics to examine the relationship between more than two categorical variables. The technique is used for both hypothesis testing and model building. In both these uses, models are tested to find the most parsimonious (i.e., least complex) model that best accounts for the variance in the observed ...

  7. Fisher information - Wikipedia

    en.wikipedia.org/wiki/Fisher_information

    Thus, the Fisher information may be seen as the curvature of the support curve (the graph of the log-likelihood). Near the maximum likelihood estimate, low Fisher information will indicates that the maximum appears to be "blunt", that is, there are many points in the neighborhood that provide a similar log-likelihood. Conversely, a high Fisher ...

  8. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    Similarly, likelihoods are often transformed to the log scale, and the corresponding log-likelihood can be interpreted as the degree to which an event supports a statistical model. The log probability is widely used in implementations of computations with probability, and is studied as a concept in its own right in some applications of ...

  9. Log-likelihood function - Wikipedia

    en.wikipedia.org/?title=Log-likelihood_function&...

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Log-likelihood_function&oldid=901713880"