enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  3. Mixture model - Wikipedia

    en.wikipedia.org/wiki/Mixture_model

    A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters

  4. Point-set registration - Wikipedia

    en.wikipedia.org/wiki/Point-set_registration

    The point set represents the Gaussian mixture model (GMM) centroids. When the two point sets are optimally aligned, the correspondence is the maximum of the GMM posterior probability for a given data point. To preserve the topological structure of the point sets, the GMM centroids are forced to move coherently as a group.

  5. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    It can be used, for example, to estimate a mixture of gaussians, or to solve the multiple linear regression problem. [2] EM clustering of Old Faithful eruption data. The random initial model (which, due to the different scales of the axes, appears to be two very flat and wide ellipses) is fit to the observed data.

  6. Foreground detection - Wikipedia

    en.wikipedia.org/wiki/Foreground_detection

    Mixture of Gaussians method approaches by modelling each pixel as a mixture of Gaussians and uses an on-line approximation to update the model. In this technique, it is assumed that every pixel's intensity values in the video can be modeled using a Gaussian mixture model . [ 6 ]

  7. Generalized method of moments - Wikipedia

    en.wikipedia.org/wiki/Generalized_method_of_moments

    In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.

  8. GMM - Wikipedia

    en.wikipedia.org/wiki/GMM

    GMM may refer to: Generalized method of moments, an econometric method; GMM Grammy, a Thai entertainment company; Gaussian mixture model, a statistical probabilistic model; Google Map Maker, a public cartography project; GMM, IATA code for Gamboma Airport in the Republic of the Congo

  9. Subspace Gaussian mixture model - Wikipedia

    en.wikipedia.org/.../Subspace_Gaussian_mixture_model

    Subspace Gaussian mixture model (SGMM) is an acoustic modeling approach in which all phonetic states share a common Gaussian mixture model structure, and the means and mixture weights vary in a subspace of the total parameter space. [1]