enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    More specifically, they can be characterized as orthogonal matrices with determinant 1; that is, a square matrix R is a rotation matrix if and only if R T = R −1 and det R = 1. The set of all orthogonal matrices of size n with determinant +1 is a representation of a group known as the special orthogonal group SO( n ) , one example of which is ...

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The most external matrix rotates the other two, leaving the second rotation matrix over the line of nodes, and the third one in a frame comoving with the body. There are 3 × 3 × 3 = 27 possible combinations of three basic rotations but only 3 × 2 × 2 = 12 of them can be used for representing arbitrary 3D rotations as Euler angles.

  5. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    A matrix will preserve or reverse orientation according to whether the determinant of the matrix is positive or negative. For an orthogonal matrix R, note that det R T = det R implies (det R) 2 = 1, so that det R = ±1. The subgroup of orthogonal matrices with determinant +1 is called the special orthogonal group, denoted SO(3).

  6. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Orthogonal matrix: A matrix whose inverse is equal to its transpose, A −1 = A T. They form the orthogonal group. Orthonormal matrix: A matrix whose columns are orthonormal vectors. Partially Isometric matrix: A matrix that is an isometry on the orthogonal complement of its kernel. Equivalently, a matrix that satisfies AA * A = A.

  7. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix. Its rows are mutually orthogonal vectors with unit norm, so that the rows constitute an orthonormal basis of V. The columns of the matrix form another orthonormal basis of V.

  8. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    The particular form of the inner product on vectors (e.g., or ) determines a reality structure (up to a factor of -1) by requiring ¯ =, whenever X is a matrix associated to a real vector. Thus K = i C is the reality structure in Euclidean signature , and K = Id is that for signature . With a reality structure in hand, one has the following ...

  9. Infinitesimal rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal_rotation_matrix

    An infinitesimal rotation matrix or differential rotation matrix is a matrix representing an infinitely small rotation.. While a rotation matrix is an orthogonal matrix = representing an element of () (the special orthogonal group), the differential of a rotation is a skew-symmetric matrix = in the tangent space (the special orthogonal Lie algebra), which is not itself a rotation matrix.