Search results
Results from the WOW.Com Content Network
In mathematical finance, the Black–Scholes equation, also called the Black–Scholes–Merton equation, is a partial differential equation (PDE) governing the price evolution of derivatives under the Black–Scholes model. [1]
Further, the Black–Scholes equation, a partial differential equation that governs the price of the option, enables pricing using numerical methods when an explicit formula is not possible. The Black–Scholes formula has only one parameter that cannot be directly observed in the market: the average future volatility of the underlying asset ...
The discrete difference equations may then be solved iteratively to calculate a price for the option. [4] The approach arises since the evolution of the option value can be modelled via a partial differential equation (PDE), as a function of (at least) time and price of underlying; see for example the Black–Scholes PDE. Once in this form, a ...
It consists of adjusting the Black–Scholes theoretical value (BSTV) by the cost of a portfolio which hedges three main risks associated to the volatility of the option: the Vega, the Vanna and the Volga. The Vanna is the sensitivity of the Vega with respect to a change in the spot FX rate:
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
A related concept is that of term structure of volatility, which describes how (implied) volatility differs for related options with different maturities. An implied volatility surface is a 3-D plot that plots volatility smile and term structure of volatility in a consolidated three-dimensional surface for all options on a given underlying asset.
Geometric Brownian motion is used to model stock prices in the Black–Scholes model and is the most widely used model of stock price behavior. [4] Some of the arguments for using GBM to model stock prices are: The expected returns of GBM are independent of the value of the process (stock price), which agrees with what we would expect in ...
Starting from a constant volatility approach, assume that the derivative's underlying asset price follows a standard model for geometric Brownian motion: = + where is the constant drift (i.e. expected return) of the security price , is the constant volatility, and is a standard Wiener process with zero mean and unit rate of variance.