Search results
Results from the WOW.Com Content Network
Recrystallization is defined as the process in which grains of a crystal structure come in a new structure or new crystal shape. A precise definition of recrystallization is difficult to state as the process is strongly related to several other processes, most notably recovery and grain growth .
Dynamic recrystallization (DRX) is a type of recrystallization process, found within the fields of metallurgy and geology. In dynamic recrystallization, as opposed to static recrystallization, the nucleation and growth of new grains occurs during deformation rather than afterwards as part of a separate heat treatment.
Dynamic quartz recrystallization happens in a relatively predictable way with relation to temperature, and given its abundance quartz recrystallization can be used to easily determine relative temperature profiles, for example in orogenic belts or near intrusions.
During this process, the physical structure of the minerals is altered while the composition remains unchanged. [1] [2] This is in contrast to metasomatism, which is the chemical alteration of a rock by hydrothermal and other fluids. Solid-state recrystallization can be illustrated by observing how snow recrystallizes to ice.
Einstein synchronisation (or Poincaré–Einstein synchronisation) is a convention for synchronising clocks at different places by means of signal exchanges. This synchronisation method was used by telegraphers in the middle 19th century, [citation needed] but was popularized by Henri Poincaré and Albert Einstein, who applied it to light signals and recognized its fundamental role in ...
A time crystal can be informally defined as a time-periodic self-organizing structure. While an ordinary crystal is periodic (has a repeating structure) in space, a time crystal has a repeating structure in time. A time crystal is periodic in time in the same sense that the pendulum in a pendulum-driven clock is periodic in time.
Time: The interval between two events present on the worldline of a single clock is called proper time, an important invariant of special relativity. As the origin of the muon at A and the encounter with Earth at D is on the muon's worldline, only a clock comoving with the muon and thus resting in S′ can indicate the proper time T′ 0 =AD.
Considering the Hafele–Keating experiment in a frame of reference at rest with respect to the center of the Earth (because this is an inertial frame [3]), a clock aboard the plane moving eastward, in the direction of the Earth's rotation, had a greater velocity (resulting in a relative time loss) than one that remained on the ground, while a ...