Search results
Results from the WOW.Com Content Network
The introduction of probabilistic methods in graph theory, especially in the study of ErdÅ‘s and Rényi of the asymptotic probability of graph connectivity, gave rise to yet another branch, known as random graph theory, which has been a fruitful source of graph-theoretic results.
In the mathematical discipline of graph theory, a graph labeling is the assignment of labels, traditionally represented by integers, to edges and/or vertices of a graph. [1] Formally, given a graph G = (V, E), a vertex labeling is a function of V to a set of labels; a graph with such a function defined is called a vertex-labeled graph.
The applicability of graph theory to geographic phenomena was recognized at an early date. Many of the early problems and theories undertaken by graph theorists were inspired by geographic situations, such as the Seven Bridges of Königsberg problem, which was one of the original foundations of graph theory when it was solved by Leonhard Euler in 1736.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
Graph theory is the branch of mathematics that examines the properties of mathematical graphs. See glossary of graph theory for common terms and their definition. Informally, this type of graph is a set of objects called vertices (or nodes) connected by links called edges (or arcs), which can also have associated directions.
Pearls in Graph Theory: A Comprehensive Introduction is an undergraduate-level textbook on graph theory by Nora Hartsfield and Gerhard Ringel.It was published in 1990 by Academic Press [1] [2] [3] with a revised edition in 1994 [4] and a paperback reprint of the revised edition by Dover Books in 2003. [5]
In graph theory, the blossom algorithm is an algorithm for constructing maximum matchings on graphs. The algorithm was developed by Jack Edmonds in 1961, [1] and published in 1965. [2] Given a general graph G = (V, E), the algorithm finds a matching M such that each vertex in V is incident with at most one edge in M and | M | is maximized. The ...
In graph theory, a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree or valency. A regular directed graph must also satisfy the stronger condition that the indegree and outdegree of each internal vertex are equal to each other. [1]