Search results
Results from the WOW.Com Content Network
However, Eberhard's theorem states that it should be possible to form a simple polyhedron by adding some number of hexagons, and in this case one hexagon suffices: bisecting a cube on a regular hexagon passing through six of its faces produces two copies of a simple roofless polyhedron with three triangle faces, three pentagon faces, and one ...
Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas.
In geometry, the Rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, 60 vertices , and 120 edges .
For every convex polyhedron, there exists a dual polyhedron having faces in place of the original's vertices and vice versa, and; the same number of edges. The dual of a convex polyhedron can be obtained by the process of polar reciprocation. [34] Dual polyhedra exist in pairs, and the dual of a dual is just the original polyhedron again.
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:
A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...
The book has 19 chapters. After two chapters introducing background material in linear algebra, topology, and convex geometry, two more chapters provide basic definitions of polyhedra, in their two dual versions (intersections of half-spaces and convex hulls of finite point sets), introduce Schlegel diagrams, and provide some basic examples including the cyclic polytopes.
The convex uniform polyhedra can be named by Wythoff construction operations on the regular form. In more detail the convex uniform polyhedron are given below by their Wythoff construction within each symmetry group. Within the Wythoff construction, there are repetitions created by lower symmetry forms. The cube is a regular polyhedron, and a ...