Ads
related to: honeycomb chapter list for school suppliesassistantking.com has been visited by 10K+ users in the past month
staplesadvantage.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
In the geometry of hyperbolic 4-space, the order-4 24-cell honeycomb is one of two paracompact regular space-filling tessellations (or honeycombs). It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {3,4,3,4}, it has four 24-cells around each face.
The alternated cubic honeycomb is one of 28 space-filling uniform tessellations in Euclidean 3-space, composed of alternating yellow tetrahedra and red octahedra.. In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells.
In the geometry of hyperbolic 3-space, the order-4-3 pentagonal honeycomb or 5,4,3 honeycomb is a regular space-filling tessellation (or honeycomb). Each infinite cell is an order-4 pentagonal tiling whose vertices lie on a 2-hypercycle , each of which has a limiting circle on the ideal sphere.
These 9 families generate a total of 76 unique uniform honeycombs. The full list of hyperbolic uniform honeycombs has not been proven and an unknown number of non-Wythoffian forms exist. Two known examples are cited with the {3,5,3} family below. Only two families are related as a mirror-removal halving: [5,3 1,1] ↔ [5,3,4,1 +].
In the geometry of hyperbolic 5-space, the 24-cell honeycomb honeycomb is one of five paracompact regular space-filling tessellations (or honeycombs). It is called paracompact because it has infinite facets , whose vertices exist on 4- horospheres and converge to a single ideal point at infinity.
In the geometry of hyperbolic 3-space, the octahedron-dodecahedron honeycomb is a compact uniform honeycomb, constructed from dodecahedron, octahedron, and icosidodecahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.
In the geometry of hyperbolic 3-space, the tetrahedral-icosahedral honeycomb is a compact uniform honeycomb, constructed from icosahedron, tetrahedron, and octahedron cells, in an icosidodecahedron vertex figure. It has a single-ring Coxeter diagram, and is named by its two regular cells.
The order-6 dodecahedral honeycomb is one of 11 paracompact regular honeycombs in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of faces, with all vertices as ideal points at infinity. It has Schläfli symbol {5,3,6}, with six ideal dodecahedral cells surrounding each edge of the honeycomb ...
Ads
related to: honeycomb chapter list for school suppliesassistantking.com has been visited by 10K+ users in the past month
staplesadvantage.com has been visited by 100K+ users in the past month