Search results
Results from the WOW.Com Content Network
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
The one-sample test statistic, , for Kuiper's test is defined as follows. Let F be the continuous cumulative distribution function which is to be the null hypothesis . Denote by F n the empirical distribution function for n independent and identically distributed (i.i.d.) observations X i , which is defined as
For exactness, the t-test and Z-test require normality of the sample means, and the t-test additionally requires that the sample variance follows a scaled χ 2 distribution, and that the sample mean and sample variance be statistically independent. Normality of the individual data values is not required if these conditions are met.
In statistics, the Jonckheere trend test [1] (sometimes called the Jonckheere–Terpstra [2] test) is a test for an ordered alternative hypothesis within an independent samples (between-participants) design. It is similar to the Kruskal-Wallis test in that the null hypothesis is that several independent samples are from the same population ...
For two matched samples, it is a paired difference test like the paired Student's t-test (also known as the "t-test for matched pairs" or "t-test for dependent samples"). The Wilcoxon test is a good alternative to the t-test when the normal distribution of the differences between paired individuals cannot be assumed.
The new multiple range test proposed by Duncan makes use of special protection levels based upon degrees of freedom.Let , = be the protection level for testing the significance of a difference between two means; that is, the probability that a significant difference between two means will not be found if the population means are equal.
The Anderson–Darling test is a statistical test of whether a given sample of data is drawn from a given probability distribution.In its basic form, the test assumes that there are no parameters to be estimated in the distribution being tested, in which case the test and its set of critical values is distribution-free.
In statistics, D'Agostino's K 2 test, named for Ralph D'Agostino, is a goodness-of-fit measure of departure from normality, that is the test aims to gauge the compatibility of given data with the null hypothesis that the data is a realization of independent, identically distributed Gaussian random variables.