Search results
Results from the WOW.Com Content Network
In refrigeration and air conditioning systems, the suction pressure' (also called the low-side pressure) is the intake pressure generated by the system compressor while operating. The suction pressure, along with the suction temperature the wet bulb temperature of the discharge air are used to determine the correct refrigerant charge in a system.
The Kelvin equation describes the change in vapour pressure due to a curved liquid–vapor interface, such as the surface of a droplet. The vapor pressure at a convex curved surface is higher than that at a flat surface. The Kelvin equation is dependent upon thermodynamic principles and does not allude to special properties of materials.
Suction is the day-to-day term for the movement of gases or liquids along a pressure gradient with the implication that the movement occurs because the lower pressure pulls the gas or liquid. However, the forces acting in this case do not originate from just the lower pressure side, but also from the side of the higher pressure, as a reaction ...
In chemical engineering, the Souders–Brown equation (named after Mott Souders and George Granger Brown [1] [2]) has been a tool for obtaining the maximum allowable vapor velocity in vapor–liquid separation vessels (variously called flash drums, knockout drums, knockout pots, compressor suction drums and compressor inlet drums).
In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
The above equations suggest there is a flow speed at which pressure is zero, and at even higher speeds the pressure is negative. Most often, gases and liquids are not capable of negative absolute pressure, or even zero pressure, so clearly Bernoulli's equation ceases to be valid before zero pressure is reached.
The equation to calculate the pressure inside a fluid in equilibrium is: f + div σ = 0 {\displaystyle \mathbf {f} +\operatorname {div} \,\sigma =0} where f is the force density exerted by some outer field on the fluid, and σ is the Cauchy stress tensor .