Search results
Results from the WOW.Com Content Network
A solved game is a game whose outcome (win, lose or draw) can be correctly predicted from any position, assuming that both players play perfectly.This concept is usually applied to abstract strategy games, and especially to games with full information and no element of chance; solving such a game may use combinatorial game theory or computer assistance.
In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.
Constant sum: A game is a constant sum game if the sum of the payoffs to every player are the same for every single set of strategies. In these games, one player gains if and only if another player loses. A constant sum game can be converted into a zero sum game by subtracting a fixed value from all payoffs, leaving their relative order unchanged.
Third stage: host opens a door. Fourth stage: player makes a final choice. The player wants to win the car, the TV station wants to keep it. This is a zero-sum two-person game. By von Neumann's theorem from game theory, if we allow both parties fully randomized strategies there exists a minimax solution or Nash equilibrium. [9]
Several variants are considered in Game Theory Evolving by Herbert Gintis. [2] In some variants of the problem, the players are allowed to communicate before deciding to go to the bar. However, they are not required to tell the truth. Named after a bar in Santa Fe, New Mexico, the problem was created in 1994 by W. Brian Arthur.
In game theory, an extensive-form game is a specification of a game allowing (as the name suggests) for the explicit representation of a number of key aspects, like the sequencing of players' possible moves, their choices at every decision point, the (possibly imperfect) information each player has about the other player's moves when they make a decision, and their payoffs for all possible ...
In game theory, the traveler's dilemma (sometimes abbreviated TD) is a non-zero-sum game in which each player proposes a payoff. The lower of the two proposals wins; the lowball player receives the lowball payoff plus a small bonus, and the highball player receives the same lowball payoff, minus a small penalty.
A simple solution dishes out one gold to the odd or even pirates up to 2G depending whether M is an even or odd power of 2. Another way to see this is to realize that every pirate M will have the vote of all the pirates from M/2 + 1 to M out of self preservation since their survival is secured only with the survival of the pirate M.