Search results
Results from the WOW.Com Content Network
The game is a potential game (Monderer and Shapley 1996-a,1996-b) The game has generic payoffs and is 2 × N (Berger 2005) Fictitious play does not always converge, however. Shapley (1964) proved that in the game pictured here (a nonzero-sum version of Rock, Paper, Scissors), if the players start by choosing (a, B), the play will cycle ...
A Rubinstein bargaining model refers to a class of bargaining games that feature alternating offers through an infinite time horizon. The original proof is due to Ariel Rubinstein in a 1982 paper. [1] For a long time, the solution to this type of game was a mystery; thus, Rubinstein's solution is one of the most influential findings in game theory.
In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.
A prototypical paper on game theory in economics begins by presenting a game that is an abstraction of a particular economic situation. One or more solution concepts are chosen, and the author demonstrates which strategy sets in the presented game are equilibria of the appropriate type.
Constant sum: A game is a constant sum game if the sum of the payoffs to every player are the same for every single set of strategies. In these games, one player gains if and only if another player loses. A constant sum game can be converted into a zero sum game by subtracting a fixed value from all payoffs, leaving their relative order unchanged.
In game theory, the traveler's dilemma (sometimes abbreviated TD) is a non-zero-sum game in which each player proposes a payoff. The lower of the two proposals wins; the lowball player receives the lowball payoff plus a small bonus, and the highball player receives the same lowball payoff, minus a small penalty.
An incomplete game of SOS. SOS is paper and pencil game for two or more players. It is similar to tic-tac-toe and dots and boxes, but has much greater complexity. [1] SOS is a combinatorial game when played with two players. In terms of game theory, it is a zero-sum, sequential game with perfect information.
Solutions in non-cooperative games are similar to all other games in game theory, but without the ones involved binding agreements enforced by the external authority. The solutions are normally based on the concept of Nash equilibrium , and these solutions are reached by using methods listed in Solution concept .