enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Absolute value - Wikipedia

    en.wikipedia.org/wiki/Absolute_value

    The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist. The subdifferential of | x | at x = 0 is the interval [−1, 1]. [14] The complex absolute value function is continuous everywhere but complex differentiable nowhere because it violates the Cauchy–Riemann ...

  3. Absolute value (algebra) - Wikipedia

    en.wikipedia.org/wiki/Absolute_value_(algebra)

    The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).

  4. Direct multiple shooting method - Wikipedia

    en.wikipedia.org/wiki/Direct_multiple_shooting...

    Thus, solutions of the boundary value problem correspond to solutions of the following system of N equations: (;,) = (;,) = (;,) =. The central N−2 equations are the matching conditions, and the first and last equations are the conditions y(t a) = y a and y(t b) = y b from the boundary value problem. The multiple shooting method solves the ...

  5. Valuation (algebra) - Wikipedia

    en.wikipedia.org/wiki/Valuation_(algebra)

    the value group or valuation group Γ v = v(K ×), a subgroup of Γ (though v is usually surjective so that Γ v = Γ); the valuation ring R v is the set of a ∈ K with v ( a ) ≥ 0, the prime ideal m v is the set of a ∈ K with v ( a ) > 0 (it is in fact a maximal ideal of R v ),

  6. Shooting method - Wikipedia

    en.wikipedia.org/wiki/Shooting_method

    In numerical analysis, the shooting method is a method for solving a boundary value problem by reducing it to an initial value problem.It involves finding solutions to the initial value problem for different initial conditions until one finds the solution that also satisfies the boundary conditions of the boundary value problem.

  7. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    The absolute value of the Jacobian determinant at p gives us the factor by which the function f expands or shrinks volumes near p; this is why it occurs in the general substitution rule. The Jacobian determinant is used when making a change of variables when evaluating a multiple integral of a function over a region within its domain. To ...

  8. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    The complex numbers of absolute value one form the unit circle. Adding a fixed complex number to all complex numbers defines a translation in the complex plane, and multiplying by a fixed complex number is a similarity centered at the origin (dilating by the absolute value, and rotating by the argument).

  9. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    This formula expresses the fact that the absolute value of the determinant of a matrix equals the volume of the parallelotope spanned by its columns or rows. More precisely, the change of variables formula is stated in the next theorem: