Search results
Results from the WOW.Com Content Network
Density (g cm-3) Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid: 298.9 44 –3.9 Acetic acid: 1.04 117.9 3.14 16.6 –3.90 K b [1] K f [2] Acetone: 0.78 56.2 1.67 –94.8 K b [3] Benzene: 0.87 80.1 2.65 5.5 –5.12 K b & K f [2 ...
Materials may swell, collapse, or change depending on the pH of their environment. This behavior is exhibited due to the presence of certain functional groups in the polymer chain. pH-sensitive materials can be either acidic or basic, responding to either basic or acidic pH values. These polymers can be designed with many different ...
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Substance Formula 0 °C 10 °C 20 °C 30 °C 40 °C 50 °C 60 °C 70 °C 80 °C 90 °C 100 °C Barium acetate: Ba(C 2 H 3 O 2) 2: 58.8: 62: 72: 75: 78.5: 77: 75
Triphenylmethanol features three phenyl (Ph) rings and an alcohol group bound to a central tetrahedral carbon atom. All three C–Ph bonds are typical of sp 3-sp 2 carbon-carbon bonds with lengths of approximately 1.47 Å, while the C–O bond length is approximately 1.42 Å.
3-Ethylpentane (C 7 H 16) is a branched saturated hydrocarbon. It is an alkane, and one of the many structural isomers of heptane, consisting of a five carbon chain with a two carbon branch at the middle carbon. An example of an alcohol derived from 3-ethylpentane is the tertiary alcohol 3-ethylpentan-3-ol. [3]
Gutmann, a chemist renowned for his work on non-aqueous solvents, described an acceptor-number scale for solvent Lewis acidity [4] with two reference points relating to the 31 P NMR chemical shift of Et 3 PO in the weakly Lewis acidic solvent hexane (δ = 41.0 ppm, AN 0) and in the strongly Lewis acidic solvent SbCl 5 (δ = 86.1 ppm, AN 100).
Therefore, the buffer regions will be centered at about pH 1.3 and pH 4.3. The buffer regions carry the information necessary to get the pK a values as the concentrations of acid and conjugate base change along a buffer region. Between the two buffer regions there is an end-point, or equivalence point, at about pH 3.