enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital decay - Wikipedia

    en.wikipedia.org/wiki/Orbital_decay

    Orbital decay is a gradual decrease of the distance between two orbiting bodies at their closest approach (the periapsis) over many orbital periods.These orbiting bodies can be a planet and its satellite, a star and any object orbiting it, or components of any binary system.

  3. Decay - Wikipedia

    en.wikipedia.org/wiki/Decay

    1.1 Biology. 1.2 Physics. 1.3 Mathematics. 1.4 Psychology and sociology. ... Orbital decay, the process of prolonged reduction in the height of a satellite's orbit;

  4. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    Every object in a 2-body ballistic trajectory has a constant specific orbital energy equal to the sum of its specific kinetic and specific potential energy: = = =, where = is the standard gravitational parameter of the massive body with mass , and is the radial distance from its center. As an object in an escape trajectory moves outward, its ...

  5. Specific orbital energy - Wikipedia

    en.wikipedia.org/wiki/Specific_orbital_energy

    The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg. Compared with the potential energy at the surface, which is −62.6 MJ/kg., the extra potential energy is 3.4 MJ/kg, and the total extra energy is 33.0 MJ/kg.

  6. Parabolic trajectory - Wikipedia

    en.wikipedia.org/wiki/Parabolic_trajectory

    The green path in this image is an example of a parabolic trajectory. A parabolic trajectory is depicted in the bottom-left quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the parabolic trajectory is shown in red. The height of the kinetic energy decreases ...

  7. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    For a given semi-major axis the specific orbital energy is independent of the eccentricity. Using the virial theorem to find: the time-average of the specific potential energy is equal to −2ε the time-average of r −1 is a −1; the time-average of the specific kinetic energy is equal to ε

  8. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    the specific orbital energy, allowing an object orbiting a larger object to be classified as having not enough energy to remain in orbit, hence being "suborbital" (a ballistic missile, for example), having enough energy to be "orbital", but without the possibility to complete a full orbit anyway because it eventually collides with the other ...

  9. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Instead, the half-life is defined in terms of probability: "Half-life is the time required for exactly half of the entities to decay on average". In other words, the probability of a radioactive atom decaying within its half-life is 50%. [2] For example, the accompanying image is a simulation of many identical atoms undergoing radioactive decay.