Search results
Results from the WOW.Com Content Network
The long-run cost curve is a cost function that models this minimum cost over time, meaning inputs are not fixed. Using the long-run cost curve, firms can scale their means of production to reduce the costs of producing the good. [1] There are three principal cost functions (or 'curves') used in microeconomic analysis:
Integration of an absorption coefficient over a path from s 1 and s 2 affords the optical thickness (τ) of that path, a dimensionless quantity that is used in some variants of the Schwarzschild equation. When emission is ignored, the incoming radiation is reduced by a factor for 1/e when transmitted over a path with an optical thickness of 1.
In geometry, the sagitta (sometimes abbreviated as sag [1]) of a circular arc is the distance from the midpoint of the arc to the midpoint of its chord. [2] It is used extensively in architecture when calculating the arc necessary to span a certain height and distance and also in optics where it is used to find the depth of a spherical mirror ...
The total cost curve, if non-linear, can represent increasing and diminishing marginal returns.. The short-run total cost (SRTC) and long-run total cost (LRTC) curves are increasing in the quantity of output produced because producing more output requires more labor usage in both the short and long runs, and because in the long run producing more output involves using more of the physical ...
Diffusion cloud chamber with tracks of ionizing radiation (alpha particles) that are made visible as strings of droplets. In dosimetry, linear energy transfer (LET) is the amount of energy that an ionizing particle transfers to the material traversed per unit distance.
Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation.The propagation of radiation through a medium is affected by absorption, emission, and scattering processes.
Because of its many applications in information theory, physics and engineering there exist alternative names for specific linear response functions such as susceptibility, impulse response or impedance; see also transfer function. The concept of a Green's function or fundamental solution of an ordinary differential equation is closely related.
The concept was first introduced by S. Pancharatnam [1] as geometric phase and later elaborately explained and popularized by Michael Berry in a paper published in 1984 [2] emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.