Search results
Results from the WOW.Com Content Network
This is a list of the various reported boiling points for the elements, with recommended values to be used elsewhere on Wikipedia. For broader coverage of this topic, see Boiling point . Boiling points, Master List format
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Water boiling at 99.3 °C (210.8 °F) at 215 m (705 ft) elevation. The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid [1] [2] and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding environmental pressure.
{{Periodic table (boiling point)|state=expanded}} or {{Periodic table (boiling point)|state=collapsed}}This template's initial visibility currently defaults to autocollapse, meaning that if there is another collapsible item on the page (a navbox, sidebar, or table with the collapsible attribute), it is hidden apart from its title bar; if not, it is fully visible.
Ref. SMI uses temperature scale ITS-48. No conversion was done, which should be of little consequence however. The temperature at standard pressure should be equal to the normal boiling point, but due to the considerable spread does not necessarily have to match values reported elsewhere. log refers to log base 10
Fahrenheit's ice/water/salt mixture: Melting point of ice (at standard pressure) Average surface temperature on Earth (15 °C) Average human body temperature (37 °C) Highest recorded surface temperature on Earth [2] Boiling point of water (at standard pressure)
For instance, precise measurements show that the boiling point of VSMOW water under one standard atmosphere of pressure is actually 373.1339 K (99.9839 °C) when adhering strictly to the two-point definition of thermodynamic temperature. When calibrated to ITS–90, where one must interpolate between the defining points of gallium and indium ...
Up to 99.63 °C (the boiling point of water at 0.1 MPa), at this pressure water exists as a liquid. Above that, it exists as water vapor. Note that the boiling point of 100.0 °C is at a pressure of 0.101325 MPa (1 atm), which is the average atmospheric pressure.