Search results
Results from the WOW.Com Content Network
During antiquity and the medieval periods, bursts of mathematical creativity were often followed by centuries of stagnation. As the early modern age opened and the worldwide spread of knowledge began, written examples of mathematical developments came to light. Symbolic stage—where comprehensive systems of notation supersede rhetoric. The ...
An interesting feature of ancient Egyptian mathematics is the use of unit fractions. [7] The Egyptians used some special notation for fractions such as 1 / 2 , 1 / 3 and 2 / 3 and in some texts for 3 / 4 , but other fractions were all written as unit fractions of the form 1 / n or sums of such unit ...
This zero sign does not appear in terminal positions, thus the Babylonians came close but did not develop a true place value system. [20] Other topics covered by Babylonian mathematics include fractions, algebra, quadratic and cubic equations, and the calculation of regular numbers, and their reciprocal pairs. [27]
The majority of recovered clay tablets date from 1800 to 1600 BC, and cover topics that include fractions, algebra, quadratic and cubic equations and the Pythagorean theorem. The Babylonian tablet YBC 7289 gives an approximation of 2 {\displaystyle {\sqrt {2}}} accurate to three significant sexagesimal digits (about six significant decimal digits).
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a/b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 / 2 , − 8 / 5 , −8 / 5 , and 8 / −5
The numbers that may be represented in the decimal system are the decimal fractions. That is, fractions of the form a/10 n, where a is an integer, and n is a non-negative integer. Decimal fractions also result from the addition of an integer and a fractional part; the resulting sum sometimes is called a fractional number.
Negative numbers and fractions were also incorporated into solutions of the great mathematical texts of the period. The mathematical texts of the time, the Book on Numbers and Computation and Jiuzhang suanshu solved basic arithmetic problems such as addition, subtraction, multiplication and division. [ 4 ]
Although it is not known when the systematic use of the 360° circle came into mathematics, it is known that the systematic introduction of the 360° circle came a little after Aristarchus of Samos composed On the Sizes and Distances of the Sun and Moon (c. 260 BC), since he measured an angle in terms of a fraction of a quadrant. [16]