Search results
Results from the WOW.Com Content Network
The "gauge covariant" version of a gauge theory accounts for this effect by introducing a gauge field (in mathematical language, an Ehresmann connection) and formulating all rates of change in terms of the covariant derivative with respect to this connection. The gauge field becomes an essential part of the description of a mathematical ...
A gauge theory is a type of theory in physics.The word gauge means a measurement, a thickness, an in-between distance (as in railroad tracks), or a resulting number of units per certain parameter (a number of loops in an inch of fabric or a number of lead balls in a pound of ammunition). [1]
Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory that admits gauge symmetry. In mathematics theory means a mathematical theory , encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a ...
The basic idea is simply that the vacuum expectation values of Wilson loops in Chern–Simons theory are link invariants because of the diffeomorphism-invariance of the theory. To calculate these expectation values, however, Witten needed to use the relation between Chern–Simons theory and a conformal field theory known as the Wess–Zumino ...
A particular choice of the scalar and vector potentials is a gauge (more precisely, gauge potential) and a scalar function ψ used to change the gauge is called a gauge function. [ citation needed ] The existence of arbitrary numbers of gauge functions ψ ( r , t ) corresponds to the U(1) gauge freedom of this theory.
In theoretical physics, the notion of gauge symmetries depending on parameter functions is a cornerstone of contemporary field theory. A gauge symmetry of a Lagrangian L {\displaystyle L} is defined as a differential operator on some vector bundle E {\displaystyle E} taking its values in the linear space of (variational or exact) symmetries of ...
They encode all gauge information of the theory, allowing for the construction of loop representations which fully describe gauge theories in terms of these loops. In pure gauge theory they play the role of order operators for confinement , where they satisfy what is known as the area law.
Seiberg–Witten theory; Six-dimensional holomorphic Chern–Simons theory; Slavnov–Taylor identities; Soft photon; Stable Yang–Mills connection; Stable Yang–Mills–Higgs pair; Stueckelberg action; Supersymmetric gauge theory; Synthetic gauge field