Search results
Results from the WOW.Com Content Network
Given any function in variables with values in an abelian group, a symmetric function can be constructed by summing values of over all permutations of the arguments. . Similarly, an anti-symmetric function can be constructed by summing over even permutations and subtracting the sum over odd permut
An abelian function is a ... A polarisation of an abelian variety is an isogeny from an abelian variety to its dual that is symmetric with respect to double ...
To qualify as an abelian group, the set and operation, (,), must satisfy four requirements known as the abelian group axioms (some authors include in the axioms some properties that belong to the definition of an operation: namely that the operation is defined for any ordered pair of elements of A, that the result is well-defined, and that the ...
In mathematics, the representation theory of the symmetric group is a particular case of the representation theory of finite groups, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from symmetric function theory to quantum chemistry studies of atoms, molecules and solids. [1] [2]
The Cayley table tells us whether a group is abelian. Because the group operation of an abelian group is commutative, a group is abelian if and only if its Cayley table's values are symmetric along its diagonal axis. The group {1, −1} above and the cyclic group of order 3 under ordinary multiplication are both examples of abelian groups, and ...
The symmetric group on a set of size n is the Galois group of the general polynomial of degree n and plays an important role in Galois theory. In invariant theory, the symmetric group acts on the variables of a multi-variate function, and the functions left invariant are the so-called symmetric functions.
Graph showing the symmetry of the addition function = + Some forms of symmetry can be directly linked to commutativity. When a commutative operation is written as a binary function z = f ( x , y ) , {\displaystyle z=f(x,y),} then this function is called a symmetric function , and its graph in three-dimensional space is symmetric across the ...
The symmetrization and antisymmetrization of a bilinear map are bilinear; thus away from 2, every bilinear form is a sum of a symmetric form and a skew-symmetric form, and there is no difference between a symmetric form and a quadratic form. At 2, not every form can be decomposed into a symmetric form and a skew-symmetric form.