Search results
Results from the WOW.Com Content Network
The Interquartile Range (IQR), defined as the difference between the upper and lower quartiles (), may be used to characterize the data when there may be extremities that skew the data; the interquartile range is a relatively robust statistic (also sometimes called "resistance") compared to the range and standard deviation. There is also a ...
The IQR of a set of values is calculated as the difference between the upper and lower quartiles, Q 3 and Q 1. Each quartile is a median [8] calculated as follows. Given an even 2n or odd 2n+1 number of values first quartile Q 1 = median of the n smallest values third quartile Q 3 = median of the n largest values [8]
Although not universally accepted, one can also speak of the fourth quartile. This is the maximum value of the set, so the fourth quartile in this example would be 20. Under the Nearest Rank definition of quantile, the rank of the fourth quartile is the rank of the biggest number, so the rank of the fourth quartile would be 10. 20
In statistics, the quartile coefficient of dispersion is a descriptive statistic which measures dispersion and is used to make comparisons within and between data sets. Since it is based on quantile information, it is less sensitive to outliers than measures such as the coefficient of variation .
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered.
The third quartile (3) is defined as the middle value halfway between the median and the largest value (maximum) of the dataset, such that 75 percent of the data lies below this quartile. Because the data must be ordered from smallest to largest in order to compute them, quartiles are a type of order statistic.
The five-number summary is a set of descriptive statistics that provides information about a dataset. It consists of the five most important sample percentiles: the sample minimum (smallest observation) the lower quartile or first quartile; the median (the middle value) the upper quartile or third quartile; the sample maximum (largest observation)
Absolute deviation in statistics is a metric that measures the overall difference between individual data points and a central value, typically the mean or median of a dataset. It is determined by taking the absolute value of the difference between each data point and the central value and then averaging these absolute differences. [ 4 ]