Search results
Results from the WOW.Com Content Network
In statistics, the quartile coefficient of dispersion (QCD) is a descriptive statistic which measures dispersion and is used to make comparisons within and between data sets. Since it is based on quantile information, it is less sensitive to outliers than measures such as the coefficient of variation .
The IQR of a set of values is calculated as the difference between the upper and lower quartiles, Q 3 and Q 1. Each quartile is a median [8] calculated as follows. Given an even 2n or odd 2n+1 number of values first quartile Q 1 = median of the n smallest values third quartile Q 3 = median of the n largest values [8]
Variance (the square of the standard deviation) – location-invariant but not linear in scale. Variance-to-mean ratio – mostly used for count data when the term coefficient of dispersion is used and when this ratio is dimensionless, as count data are themselves dimensionless, not otherwise. Some measures of dispersion have specialized purposes.
There are several types of indices used for the analysis of nominal data. Several are standard statistics that are used elsewhere - range, standard deviation, variance, mean deviation, coefficient of variation, median absolute deviation, interquartile range and quartile deviation.
Its standard deviation is 32.9 and its average is 27.9, giving a coefficient of variation of 32.9 / 27.9 = 1.18; In these examples, we will take the values given as the entire population of values. The data set [100, 100, 100] has a population standard deviation of 0 and a coefficient of variation of 0 / 100 = 0
Third quartile (Q 3 or 75th percentile): also known as the upper quartile q n (0.75), it is the median of the upper half of the dataset. [ 7 ] In addition to the minimum and maximum values used to construct a box-plot, another important element that can also be employed to obtain a box-plot is the interquartile range (IQR), as denoted below:
"The value for which P = .05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take this point as a limit in judging whether a deviation is to be considered significant or not." [11] In Table 1 of the same work, he gave the more precise value 1.959964. [12] In 1970, the value truncated to 20 decimal places was calculated to be
Notice that whereas the extreme values of the five-number summary depend on the number of samples, this seven-number summary does not, and is somewhat more stable, since its whisker-ends are protected from the usual wild swings in the extreme values of the sample by replacing them with the more steady 2nd and 98th percentiles.