Search results
Results from the WOW.Com Content Network
One may integrate over the phase space to obtain the total decay rate for the specified final state. If a particle has multiple decay branches or modes with different final states, its full decay rate is obtained by summing the decay rates for all branches. The branching ratio for each mode is given by its decay rate divided by the full decay rate.
A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation , where N is the quantity and λ ( lambda ) is a positive rate called the exponential decay constant , disintegration constant , [ 1 ] rate constant , [ 2 ] or ...
The decay constant, λ "lambda", the reciprocal of the mean lifetime (in s −1), sometimes referred to as simply decay rate. The mean lifetime , τ " tau ", the average lifetime (1/ e life) of a radioactive particle before decay.
In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on.
In this case one speaks of full radiative decay and this means that the quantum efficiency is 100%. Besides radiative decay, which occurs under the emission of light, there is a second decay mechanism; nonradiative decay. To determine the total decay rate , radiative and nonradiative rates should be summed:
Orbital decay is a gradual decrease of the distance between two ... The rate of loss of orbital energy is simply the rate at the external force does negative work ...
In particle physics and nuclear physics, the branching fraction (or branching ratio) for a decay is the fraction of particles which decay by an individual decay mode or with respect to the total number of particles which decay. It applies to either the radioactive decay of atoms or the decay of elementary particles. [1]
In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]