Search results
Results from the WOW.Com Content Network
In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by Raoul Bott (1957, 1959), which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres.
Raoul Bott (September 24, 1923 – December 20, 2005) [1] was a Hungarian-American mathematician known for numerous foundational contributions to geometry in its broad sense. He is best known for his Bott periodicity theorem , the Morse–Bott functions which he used in this context, and the Borel–Bott–Weil theorem .
Morse–Bott functions are useful because generic Morse functions are difficult to work with; the functions one can visualize, and with which one can easily calculate, typically have symmetries. They often lead to positive-dimensional critical manifolds. Raoul Bott used Morse–Bott theory in his original proof of the Bott periodicity theorem.
In 2000 Allyn Jackson interviewed Bott, who then revealed Shapiro's part in the Periodicity Theorem. He explained that there was a controversy in dimension 10 about the homotopy of the unitary group. I hit upon a very complicated method involving the exceptional group G2 to check the conundrum independently. My good friend Arnold Shapiro and I ...
Finally, the Bott periodicity theorem as formulated below extends the theories to positive integers. ... The phenomenon of periodicity named after Raoul Bott ...
Morse originally applied his theory to geodesics (critical points of the energy functional on paths); these techniques were used in Raoul Bott's proof of his periodicity theorem. Morse theory is a very important subject in modern mathematical physics, such as string theory. He died on June 22, 1977, at his home in Princeton, New Jersey. [8]
The abstract theory of Clifford modules was founded by a paper of M. F. Atiyah, R. Bott and Arnold S. Shapiro. A fundamental result on Clifford modules is that the Morita equivalence class of a Clifford algebra (the equivalence class of the category of Clifford modules over it) depends only on the signature p − q (mod 8).
1969 Raoul Bott (Harvard University): On the periodicity theorem of the classical groups and its applications. 1969 Harish-Chandra (Institute for Advanced Study): Harmonic analysis of semisimple Lie groups. 1970 R. H. Bing (University of Wisconsin, Madison): Topology of 3-manifolds.