Search results
Results from the WOW.Com Content Network
The x86 instruction set refers to the set of instructions that x86-compatible microprocessors support. The instructions are usually part of an executable program, often stored as a computer file and executed on the processor. The x86 instruction set has been extended several times, introducing wider registers and datatypes as well as new ...
Bit manipulation instructions sets (BMI sets) are extensions to the x86 instruction set architecture for microprocessors from Intel and AMD. The purpose of these instruction sets is to improve the speed of bit manipulation. All the instructions in these sets are non-SIMD and operate only on general-purpose registers.
AMD Opteron, the first CPU to introduce the x86-64 extensions in April 2003 The five-volume set of the x86-64 Architecture Programmer's Manual, as published and distributed by AMD in 2002. x86-64 (also known as x64, x86_64, AMD64, and Intel 64) [note 1] is a 64-bit extension of the x86 instruction set architecture first announced in
The x86 processors support five modes of operation for x86 code, Real Mode, Protected Mode, Long Mode, Virtual 86 Mode, and System Management Mode, in which some instructions are available and others are not. A 16-bit subset of instructions is available on the 16-bit x86 processors, which are the 8086, 8088, 80186, 80188, and 80286.
Linux distributions refer to it either as "x86-64", its variant "x86_64", or "amd64". BSD systems use "amd64" while macOS uses "x86_64". Long mode is mostly an extension of the 32-bit instruction set, but unlike the 16–to–32-bit transition, many instructions were dropped in the 64-bit mode.
The VIA/Zhaoxin PadLock instructions are instructions designed to apply cryptographic primitives in bulk, similar to the 8086 repeated string instructions. As such, unless otherwise specified, they take, as applicable, pointers to source data in ES:rSI and destination data in ES:rDI, and a data-size or count in rCX.
Instruction set extensions that have been added to the x86 instruction set in order to support hardware virtualization.These extensions provide instructions for entering and leaving a virtualized execution context and for loading virtual-machine control structures (VMCSs), which hold the state of the guest and host, along with fields which control processor behavior within the virtual machine.
The calling convention of the System V AMD64 ABI is followed on Solaris, Linux, FreeBSD, macOS, [26] and is the de facto standard among Unix and Unix-like operating systems. The OpenVMS Calling Standard on x86-64 is based on the System V ABI with some extensions needed for backwards compatibility. [27]