enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value.

  3. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    Unlike in the case of estimating the population mean of a normal distribution, for which the sample mean is a simple estimator with many desirable properties (unbiased, efficient, maximum likelihood), there is no single estimator for the standard deviation with all these properties, and unbiased estimation of standard deviation is a very ...

  4. Bessel's correction - Wikipedia

    en.wikipedia.org/wiki/Bessel's_correction

    Since the square root introduces bias, the terminology "uncorrected" and "corrected" is preferred for the standard deviation estimators: s n is the uncorrected sample standard deviation (i.e., without Bessel's correction) s is the corrected sample standard deviation (i.e., with Bessel's correction), which is less biased, but still biased

  5. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    The unbiased estimation of standard deviation is a technically involved problem, though for the normal distribution using the term n − 1.5 yields an almost unbiased estimator. The unbiased sample variance is a U-statistic for the function ƒ ( y 1 , y 2 ) = ( y 1 − y 2 ) 2 /2, meaning that it is obtained by averaging a 2-sample statistic ...

  6. Statistical dispersion - Wikipedia

    en.wikipedia.org/wiki/Statistical_dispersion

    Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered.

  7. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    where X is a random variable which we have sampled N times, m is the sample mean, k is a constant and s is the sample standard deviation. This inequality holds even when the population moments do not exist, and when the sample is only weakly exchangeably distributed; this criterion is met for randomised sampling.

  8. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    If is a standard normal deviate, then = + will have a normal distribution with expected value and standard deviation . This is equivalent to saying that the standard normal distribution Z {\textstyle Z} can be scaled/stretched by a factor of σ {\textstyle \sigma } and shifted by μ {\textstyle \mu } to yield a different normal distribution ...

  9. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.