Search results
Results from the WOW.Com Content Network
Classically we have for the angular momentum =. This is the same in quantum mechanics considering and as operators. Classically, an infinitesimal rotation of the vector = (,,) about the -axis to ′ = (′, ′,) leaving unchanged can be expressed by the following infinitesimal translations (using Taylor approximation):
The quantum rotor model is a mathematical model for a quantum system. It can be visualized as an array of rotating electrons which behave as rigid rotors that interact through short-range dipole-dipole magnetic forces originating from their magnetic dipole moments (neglecting Coulomb forces ).
Since the angular momentum operator is given by J = A + B, the highest spin in quantum mechanics of the rotation sub-representation will be (m + n)ℏ and the "usual" rules of addition of angular momenta and the formalism of 3-j symbols, 6-j symbols, etc. applies. [98]
It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter D stands for Darstellung, which means "representation" in German.
The rotation operator gates (), and () are the analog rotation matrices in three Cartesian axes of SO(3), [c] along the x, y or z-axes of the Bloch sphere projection. As Pauli matrices are related to the generator of rotations, these rotation operators can be written as matrix exponentials with Pauli matrices in the argument.
The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics.It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.
In quantum computing, Grover's algorithm, also known as the quantum search algorithm, is a quantum algorithm for unstructured search that finds with high probability the unique input to a black box function that produces a particular output value, using just () evaluations of the function, where is the size of the function's domain.
A key factor that makes this approach useful for quantum chemistry is that the number of state register qubits is the natural logarithm of the number of excitations, thus offering an exponential suppression in the number of required qubits when compared to variational quantum eigensolver or the quantum phase estimation algorithms.