enow.com Web Search

  1. Ads

    related to: perimeter of a rhombus diagonals and triangles worksheet

Search results

  1. Results from the WOW.Com Content Network
  2. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    Using congruent triangles, one can prove that the rhombus is symmetric across each of these diagonals. It follows that any rhombus has the following properties: Opposite angles of a rhombus have equal measure. The two diagonals of a rhombus are perpendicular; that is, a rhombus is an orthodiagonal quadrilateral. Its diagonals bisect opposite ...

  3. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...

  4. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    A rhombus with a right vertex angle; A rhombus with all angles equal; A parallelogram with one right vertex angle and two adjacent equal sides; A quadrilateral with four equal sides and four right angles; A quadrilateral where the diagonals are equal, and are the perpendicular bisectors of each other (i.e., a rhombus with equal diagonals)

  5. Newton's theorem (quadrilateral) - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem...

    Furthermore, let E and F the midpoints of its diagonals AC and BD and P be the center of its incircle. Given such a configuration the point P is located on the Newton line, that is line EF connecting the midpoints of the diagonals. [1] A tangential quadrilateral with two pairs of parallel sides is a rhombus.

  6. Golden rectangle - Wikipedia

    en.wikipedia.org/wiki/Golden_rectangle

    The parallelogram between the pair of upright grey triangles has perpendicular diagonals in ratio ⁠ ⁠, hence is a golden rhombus. If the triangle has legs of lengths 1 and 2 then each discrete spiral has length φ 2 = ∑ n = 0 ∞ φ − n . {\displaystyle \varphi ^{2}=\sum _{n=0}^{\infty }\varphi ^{-n}.}

  7. Golden rhombus - Wikipedia

    en.wikipedia.org/wiki/Golden_rhombus

    The golden rhombus. In geometry, a golden rhombus is a rhombus whose diagonals are in the golden ratio: [1] = = + Equivalently, it is the Varignon parallelogram formed from the edge midpoints of a golden rectangle. [1]

  1. Ads

    related to: perimeter of a rhombus diagonals and triangles worksheet