enow.com Web Search

  1. Ads

    related to: perimeter of a rhombus diagonals and triangles examples

Search results

  1. Results from the WOW.Com Content Network
  2. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    Using congruent triangles, one can prove that the rhombus is symmetric across each of these diagonals. It follows that any rhombus has the following properties: Opposite angles of a rhombus have equal measure. The two diagonals of a rhombus are perpendicular; that is, a rhombus is an orthodiagonal quadrilateral. Its diagonals bisect opposite ...

  3. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...

  4. Equidiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Equidiagonal_quadrilateral

    An equidiagonal kite that maximizes the ratio of perimeter to diameter, inscribed in a Reuleaux triangle. Among all quadrilaterals, the shape that has the greatest ratio of its perimeter to its diameter is an equidiagonal kite with angles π/3, 5π/12, 5π/6, and 5π/12. [2]

  5. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    If it also has exactly two lines of reflectional symmetry then it must be a rhombus or an oblong (a non-square rectangle). If it has four lines of reflectional symmetry, it is a square. The perimeter of a parallelogram is 2(a + b) where a and b are the lengths of adjacent sides.

  6. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    All triangles can have an incircle, but not all quadrilaterals do. An example of a quadrilateral that cannot be tangential is a non-square rectangle. The section characterizations below states what necessary and sufficient conditions a quadrilateral must satisfy to be able to have an incircle.

  7. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    The diagonals of the Varignon parallelogram are the bimedians of the original quadrilateral. The two bimedians in a quadrilateral and the line segment joining the midpoints of the diagonals in that quadrilateral are concurrent and are all bisected by their point of intersection. [24]: p.125

  8. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    Every kite is an orthodiagonal quadrilateral, meaning that its two diagonals are at right angles to each other. Moreover, one of the two diagonals (the symmetry axis) is the perpendicular bisector of the other, and is also the angle bisector of the two angles it meets. [1] Because of its symmetry, the other two angles of the kite must be equal.

  9. Rectangle - Wikipedia

    en.wikipedia.org/wiki/Rectangle

    The midpoints of the sides of any quadrilateral with perpendicular diagonals form a rectangle. A parallelogram with equal diagonals is a rectangle. The Japanese theorem for cyclic quadrilaterals [12] states that the incentres of the four triangles determined by the vertices of a cyclic quadrilateral taken three at a time form a rectangle.

  1. Ads

    related to: perimeter of a rhombus diagonals and triangles examples