Search results
Results from the WOW.Com Content Network
C# has a static class syntax (not to be confused with static inner classes in Java), which restricts a class to only contain static methods. C# 3.0 introduces extension methods to allow users to statically add a method to a type (e.g., allowing foo.bar() where bar() can be an imported extension method working on the type of foo ).
Classes are reference types and structs are value types. A structure is allocated on the stack when it is declared and the variable is bound to its address. It directly contains the value. Classes are different because the memory is allocated as objects on the heap. Variables are rather managed pointers on the stack which point to the objects.
C# (/ ˌ s iː ˈ ʃ ɑːr p / see SHARP) [b] is a general-purpose high-level programming language supporting multiple paradigms.C# encompasses static typing, [16]: 4 strong typing, lexically scoped, imperative, declarative, functional, generic, [16]: 22 object-oriented (class-based), and component-oriented programming disciplines.
When a member function is called on an object, it invokes the member function with the same name on the object's class object, with the object automatically bound to the first argument of the function. Thus, the obligatory first parameter of instance methods serves as this; this parameter is conventionally named self, but can be named anything.
The modified object is often a class, a prototype, or a type. Extension methods are features of some object-oriented programming languages. There is no syntactic difference between calling an extension method and calling a method declared in the type definition. [1] Not all languages implement extension methods in an equally safe manner, however.
As a precursor to the lambda functions introduced in C# 3.0, C#2.0 added anonymous delegates. These provide closure-like functionality to C#. [3] Code inside the body of an anonymous delegate has full read/write access to local variables, method parameters, and class members in scope of the delegate, excepting out and ref parameters.
Therefore, both Java and C# treat array types covariantly. For instance, in Java String [] is a subtype of Object [], and in C# string [] is a subtype of object []. As discussed above, covariant arrays lead to problems with writes into the array. Java [4]: 126 and C# deal with this by marking each array object with a type when it is created ...
The Java language has provided genericity facilities syntactically based on C++'s since the introduction of Java Platform, Standard Edition (J2SE) 5.0. C# 2.0, Oxygene 1.5 (formerly Chrome) and Visual Basic (.NET) 2005 have constructs that exploit the support for generics present in Microsoft .NET Framework since version 2.0.