Ads
related to: decimals terminating and repeating gradeseducation.com has been visited by 100K+ users in the past month
It’s an amazing resource for teachers & homeschoolers - Teaching Mama
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Printable Workbooks
Search results
Results from the WOW.Com Content Network
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123 144). [4] An infinite decimal represents a rational number, the quotient of two integers, if and only if it is a repeating decimal or has a finite number of non-zero digits.
A number has a terminating or repeating expansion if and only if it is rational; this does not depend on the base. A number that terminates in one base may repeat in another (thus 0.3 10 = 0.0100110011001... 2). An irrational number stays aperiodic (with an infinite number of non-repeating digits) in all integral bases.
Another common way of expressing the base is writing it as a decimal subscript after the number that is being represented (this notation is used in this article). 1111011 2 implies that the number 1111011 is a base-2 number, equal to 123 10 (a decimal notation representation), 173 8 and 7B 16 (hexadecimal).
For repeating expansions in integer bases other than 10, see Repeating decimal#Extension to other bases. Regardless of the choice of base, any repeating or terminating expansion is a rational number (and thus the quotient of two integers), and the expansion of any rational number will either repeat or terminate.
In the latter case, continuing the process would be pointless, because from that point onward the same sequence of digits would appear in the quotient over and over. So a bar is drawn over the repeating sequence to indicate that it repeats forever (i.e., every rational number is either a terminating or repeating decimal).
A vinculum can indicate a line segment where A and B are the endpoints: ¯. A vinculum can indicate the repetend of a repeating decimal value: . 1 ⁄ 7 = 0. 142857 = 0.1428571428571428571...
Ads
related to: decimals terminating and repeating gradeseducation.com has been visited by 100K+ users in the past month
It’s an amazing resource for teachers & homeschoolers - Teaching Mama