enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent with momentum remembers the solution update at each iteration, and determines the next update as a linear combination of the gradient and the previous update. For unconstrained quadratic minimization, a theoretical convergence rate bound of the heavy ball method is asymptotically the same as that for the optimal conjugate ...

  3. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.

  4. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    Strictly speaking, the term backpropagation refers only to an algorithm for efficiently computing the gradient, not how the gradient is used; but the term is often used loosely to refer to the entire learning algorithm – including how the gradient is used, such as by stochastic gradient descent, or as an intermediate step in a more ...

  5. Moreau envelope - Wikipedia

    en.wikipedia.org/wiki/Moreau_envelope

    By defining the sequence + = and using the above identity, we can interpret the proximal operator as a gradient descent algorithm over the Moreau envelope. Using Fenchel's duality theorem, one can derive the following dual formulation of the Moreau envelope:

  6. Free energy principle - Wikipedia

    en.wikipedia.org/wiki/Free_energy_principle

    The associated process theory of neuronal dynamics is based on minimising free energy through gradient descent. This corresponds to generalised Bayesian filtering (where ~ denotes a variable in generalised coordinates of motion and D {\displaystyle D} is a derivative matrix operator): [ 39 ]

  7. Early stopping - Wikipedia

    en.wikipedia.org/wiki/Early_stopping

    Gradient descent methods are first-order, iterative, optimization methods. Each iteration updates an approximate solution to the optimization problem by taking a step in the direction of the negative of the gradient of the objective function.

  8. Descent direction - Wikipedia

    en.wikipedia.org/wiki/Descent_direction

    In optimization, a descent direction is a vector that points towards a local minimum of an objective function :.. Computing by an iterative method, such as line search defines a descent direction at the th iterate to be any such that , <, where , denotes the inner product.

  9. Łojasiewicz inequality - Wikipedia

    en.wikipedia.org/wiki/Łojasiewicz_inequality

    In short, because the gradient descent steps are too large, the variance in the stochastic gradient starts to dominate, and starts doing a random walk in the vicinity of . For decreasing learning rate schedule with η k = O ( 1 / k ) {\textstyle \eta _{k}=O(1/k)} , we have E [ f ( x k ) − f ∗ ] = O ( 1 / k ) {\displaystyle \mathbb {E} \left ...