Search results
Results from the WOW.Com Content Network
In a dispersive prism, material dispersion (a wavelength-dependent refractive index) causes different colors to refract at different angles, splitting white light into a spectrum. A compact fluorescent lamp seen through an Amici prism. Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1]
The name "dispersion relation" originally comes from optics. It is possible to make the effective speed of light dependent on wavelength by making light pass through a material which has a non-constant index of refraction, or by using light in a non-uniform medium such as a waveguide. In this case, the waveform will spread over time, such that ...
This is a result of the prism material's index of refraction varying with wavelength (dispersion). Generally, longer wavelengths (red) undergo a smaller deviation than shorter wavelengths (blue). The dispersion of white light into colors by a prism led Sir Isaac Newton to conclude that white light consisted of a mixture of different colors.
Another example is incandescent light bulbs, which emit only around 10% of their energy as visible light and the remainder as infrared. A common thermal light source in history is the glowing solid particles in flames, but these also emit most of their radiation in the infrared and only a fraction in the visible spectrum.
The dispersion of the refractive index is a fundamental property of matter. It may be thought of as the result of the relative proximity of the harmonic frequencies of the outer shell electrons in a compound to the frequencies of visible light. The harmonic frequency of the bonding electron is the result of the energy of that bond.
Optical glass refers to a quality of glass suitable for the manufacture of optical systems such as optical lenses, prisms or mirrors.Unlike window glass or crystal, whose formula is adapted to the desired aesthetic effect, optical glass contains additives designed to modify certain optical or mechanical properties of the glass: refractive index, dispersion, transmittance, thermal expansion and ...
Dispersive prisms are used to break up light into its constituent spectral colors because the refractive index depends on wavelength; the white light entering the prism is a mixture of different wavelengths, each of which gets bent slightly differently. Blue light is slowed more than red light and will therefore be bent more than red light.
In optics, group-velocity dispersion (GVD) is a characteristic of a dispersive medium, used most often to determine how the medium affects the duration of an optical pulse traveling through it. Formally, GVD is defined as the derivative of the inverse of group velocity of light in a material with respect to angular frequency , [ 1 ] [ 2 ]