enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    Download as PDF; Printable version; In other projects ... The limit of f as x approaches infinity is L, ... In each rule above, when one of the limits on the right is ...

  3. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    On one hand, the limit as n approaches infinity of a sequence {a n} is simply the limit at infinity of a function a(n) —defined on the natural numbers {n}. On the other hand, if X is the domain of a function f ( x ) and if the limit as n approaches infinity of f ( x n ) is L for every arbitrary sequence of points { x n } in X − x 0 which ...

  4. Stolz–Cesàro theorem - Wikipedia

    en.wikipedia.org/wiki/Stolz–Cesàro_theorem

    Assume that () is a strictly monotone and divergent sequence (i.e. strictly increasing and approaching +, or strictly decreasing and approaching ) and the following limit exists: lim n → ∞ a n + 1 − a n b n + 1 − b n = l .

  5. Root test - Wikipedia

    en.wikipedia.org/wiki/Root_test

    if C = 1 and the limit approaches strictly from above then the series diverges, otherwise the test is inconclusive (the series may diverge, converge absolutely or converge conditionally ). There are some series for which C = 1 and the series converges, e.g. ∑ 1 / n 2 {\displaystyle \textstyle \sum 1/{n^{2}}} , and there are others for which C ...

  6. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    A limit of a sequence of points () in a topological space is a special case of a limit of a function: the domain is in the space {+}, with the induced topology of the affinely extended real number system, the range is , and the function argument tends to +, which in this space is a limit point of .

  7. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...

  8. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence. = =. This is known as the harmonic series. [6]

  9. Extended real number line - Wikipedia

    en.wikipedia.org/wiki/Extended_real_number_line

    On the other hand, the function / cannot be continuously extended, because the function approaches as approaches 0 from below, and + as approaches 0 from above, i.e., the function not converging to the same value as its independent variable approaching to the same domain element from both the positive and negative value sides.