Search results
Results from the WOW.Com Content Network
In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, [1] is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem (named after Arthur Cayley ), and uses a specified set of generators for the group.
A simple example of a Cayley transform can be done on the real projective line. The Cayley transform here will permute the elements of {1, 0, −1, ∞} in sequence. For example, it maps the positive real numbers to the interval [−1, 1]. Thus the Cayley transform is used to adapt Legendre polynomials for use with functions on the positive ...
Geometric group theory grew out of combinatorial group theory that largely studied properties of discrete groups via analyzing group presentations, which describe groups as quotients of free groups; this field was first systematically studied by Walther von Dyck, student of Felix Klein, in the early 1880s, [2] while an early form is found in the 1856 icosian calculus of William Rowan Hamilton ...
Visualization comparing the sheet and the binary tree Cayley graph of (,). Red and blue edges correspond to a {\displaystyle a} and b {\displaystyle b} , respectively. In the mathematical field of group theory , the Baumslag–Solitar groups are examples of two-generator one-relator groups that play an important role in combinatorial group ...
Examples of the use of groups in physics include the Standard Model, gauge theory, the Lorentz group, and the Poincaré group. Group theory can be used to resolve the incompleteness of the statistical interpretations of mechanics developed by Willard Gibbs , relating to the summing of an infinite number of probabilities to yield a meaningful ...
In mathematics, an automatic group is a finitely generated group equipped with several finite-state automata.These automata represent the Cayley graph of the group. That is, they can tell whether a given word representation of a group element is in a "canonical form" and can tell whether two elements given in canonical words differ by a generator.
Cayley, in his original 1854 paper, [10] showed that the correspondence in the theorem is one-to-one, but he failed to explicitly show it was a homomorphism (and thus an embedding). However, Nummela notes that Cayley made this result known to the mathematical community at the time, thus predating Jordan by 16 years or so.
Hence, the fundamental group of the Cayley graph Γ(G) is isomorphic to the kernel of φ, the normal subgroup of relations among the generators of G. The extreme case is when G = {e}, the trivial group, considered with as many generators as F, all of them trivial; the Cayley graph Γ(G) is a bouquet of circles, and its fundamental group is F ...