enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  3. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    φ c is the intercorrelation of the two discrete variables [33] and may be computed for any value of r or c. However, as chi-squared values tend to increase with the number of cells, the greater the difference between r and c, the more likely V will tend to 1 without strong evidence of a meaningful correlation.

  4. Pseudo-R-squared - Wikipedia

    en.wikipedia.org/wiki/Pseudo-R-squared

    The last value listed, labelled “r2CU” is the pseudo-r-squared by Nagelkerke and is the same as the pseudo-r-squared by Cragg and Uhler. Pseudo-R-squared values are used when the outcome variable is nominal or ordinal such that the coefficient of determination R 2 cannot be applied as a measure for goodness of fit and when a likelihood ...

  5. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    The p-value for the permutation test is the proportion of the r values generated in step (2) that are larger than the Pearson correlation coefficient that was calculated from the original data. Here "larger" can mean either that the value is larger in magnitude, or larger in signed value, depending on whether a two-sided or one-sided test is ...

  6. Spearman's rank correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Spearman's_rank_correlation...

    If F(r) is the Fisher transformation of r, the sample Spearman rank correlation coefficient, and n is the sample size, then z = n − 3 1.06 F ( r ) {\displaystyle z={\sqrt {\frac {n-3}{1.06}}}F(r)} is a z -score for r , which approximately follows a standard normal distribution under the null hypothesis of statistical independence ( ρ = 0 ).

  7. Linear trend estimation - Wikipedia

    en.wikipedia.org/wiki/Linear_trend_estimation

    All have the same trend, but more filtering leads to higher r 2 of fitted trend line. The least-squares fitting process produces a value, r-squared (r 2), which is 1 minus the ratio of the variance of the residuals to the variance of the dependent variable. It says what fraction of the variance of the data is explained by the fitted trend line.

  8. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    When X n converges in r-th mean to X for r = 2, we say that X n converges in mean square (or in quadratic mean) to X. Convergence in the r-th mean, for r ≥ 1, implies convergence in probability (by Markov's inequality). Furthermore, if r > s ≥ 1, convergence in r-th mean implies convergence in s-th mean. Hence, convergence in mean square ...

  9. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    A plot of the absolute or squared residuals versus the predicted values (or each predictor) can also be examined for a trend or curvature. Formal tests can also be used; see Heteroscedasticity . The presence of heteroscedasticity will result in an overall "average" estimate of variance being used instead of one that takes into account the true ...