Search results
Results from the WOW.Com Content Network
In mathematics, a path in a topological space is a continuous function from a closed interval into . Paths play an important role in the fields of topology and mathematical analysis . For example, a topological space for which there exists a path connecting any two points is said to be path-connected .
The algorithm assumes that the Dijkstra algorithm is used to find the shortest path between two nodes, but any shortest path algorithm can be used in its place. function YenKSP(Graph, source, sink, K): // Determine the shortest path from the source to the sink. A[0] = Dijkstra(Graph, source, sink); // Initialize the set to store the potential ...
TensorFlow includes an “eager execution” mode, which means that operations are evaluated immediately as opposed to being added to a computational graph which is executed later. [35] Code executed eagerly can be examined step-by step-through a debugger, since data is augmented at each line of code rather than later in a computational graph. [35]
In quantum field theory, partition functions are generating functionals for correlation functions, making them key objects of study in the path integral formalism. They are the imaginary time versions of statistical mechanics partition functions , giving rise to a close connection between these two areas of physics.
The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:
The difference between initial and final states of the system's internal energy does not account for the extent of the energy interactions transpired. Therefore, internal energy is a state function (i.e. exact differential), while heat and work are path functions (i.e. inexact differentials) because integration must account for the path taken.
In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...
A central problem in algorithmic graph theory is the shortest path problem.One of the generalizations of the shortest path problem is known as the single-source-shortest-paths (SSSP) problem, which consists of finding the shortest paths from a source vertex to all other vertices in the graph.