Search results
Results from the WOW.Com Content Network
0101 (decimal 5) OR 0011 (decimal 3) = 0111 (decimal 7) The bitwise OR may be used to set to 1 the selected bits of the register described above. For example, the fourth bit of 0010 (decimal 2) may be set by performing a bitwise OR with the pattern with only the fourth bit set: 0010 (decimal 2) OR 1000 (decimal 8) = 1010 (decimal 10)
That is, the value of an octal "10" is the same as a decimal "8", an octal "20" is a decimal "16", and so on. In a hexadecimal system, there are 16 digits, 0 through 9 followed, by convention, with A through F. That is, a hexadecimal "10" is the same as a decimal "16" and a hexadecimal "20" is the same as a decimal "32".
The MSb is similarly referred to as the high-order bit or left-most bit. In both cases, the LSb and MSb correlate directly to the least significant digit and most significant digit of a decimal integer. Bit indexing correlates to the positional notation of the value in base 2.
On a typical computer system, a double-precision (64-bit) binary floating-point number has a coefficient of 53 bits (including 1 implied bit), an exponent of 11 bits, and 1 sign bit. Since 2 10 = 1024, the complete range of the positive normal floating-point numbers in this format is from 2 −1022 ≈ 2 × 10 −308 to approximately 2 1024 ≈ ...
Dot-decimal notation is a presentation format for numerical data. It consists of a string of decimal numbers, using the full stop (dot) as a separation character. [1]A common use of dot-decimal notation is in information technology where it is a method of writing numbers in octet-grouped base-10 numbers. [2]
The Q notation is a way to specify the parameters of a binary fixed point number format. For example, in Q notation, the number format denoted by Q8.8 means that the fixed point numbers in this format have 8 bits for the integer part and 8 bits for the fraction part. A number of other notations have been used for the same purpose.
Thus only 23 fraction bits of the significand appear in the memory format, but the total precision is 24 bits (equivalent to log 10 (2 24) ≈ 7.225 decimal digits) for normal values; subnormals have gracefully degrading precision down to 1 bit for the smallest non-zero value. The bits are laid out as follows:
The otherwise binary Wang VS machine supported a 64-bit decimal floating-point format in 1977. [2] The Motorola 68881 supported a format with 17 digits of mantissa and 3 of exponent in 1984, with the floating-point support library for the Motorola 68040 processor providing a compatible 96-bit decimal floating-point storage format in 1990. [2]