Ads
related to: parabola equation y2 4ax 4 x 5 area rugs blue heron
Search results
Results from the WOW.Com Content Network
The evolute of a curve (blue parabola) is the locus of all its centers of curvature (red). The evolute of a curve (in this case, an ellipse) is the envelope of its normals. In the differential geometry of curves, the evolute of a curve is the locus of all its centers of curvature. That is to say that when the center of curvature of each point ...
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
The discriminant B 2 – 4AC of the conic section's quadratic equation (or equivalently the determinant AC – B 2 /4 of the 2 × 2 matrix) and the quantity A + C (the trace of the 2 × 2 matrix) are invariant under arbitrary rotations and translations of the coordinate axes, [14] [15] [16] as is the determinant of the 3 × 3 matrix above.
A pencil of confocal ellipses and hyperbolas is specified by choice of linear eccentricity c (the x-coordinate of one focus) and can be parametrized by the semi-major axis a (the x-coordinate of the intersection of a specific conic in the pencil and the x-axis). When 0 < a < c the conic is a hyperbola; when c < a the conic is an ellipse.
The unit hyperbola is blue, its conjugate is green, and the asymptotes are red. In geometry , the unit hyperbola is the set of points ( x , y ) in the Cartesian plane that satisfy the implicit equation x 2 − y 2 = 1. {\displaystyle x^{2}-y^{2}=1.}
The zero level set F(t 0,(x,y)) = 0 gives the equation of the tangent line to the parabola at the point (t 0,t 0 2). The equation t 2 – 2 tx + y = 0 can always be solved for y as a function of x and so, consider
Ads
related to: parabola equation y2 4ax 4 x 5 area rugs blue heron