enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fracture mechanics - Wikipedia

    en.wikipedia.org/wiki/Fracture_mechanics

    Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture .

  3. Boundary element method - Wikipedia

    en.wikipedia.org/wiki/Boundary_element_method

    The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations (i.e. in boundary integral form), including fluid mechanics, acoustics, electromagnetics (where the technique is known as method of moments or abbreviated as MoM), [1] fracture mechanics, [2] and contact mechanics.

  4. Crack tip opening displacement - Wikipedia

    en.wikipedia.org/wiki/Crack_tip_opening_displacement

    The critical load and strain gauge measurements at the load are noted and a graph is plotted. The crack tip opening can be calculated from the length of the crack and opening at the mouth of the notch. According to the material used, the fracture can be brittle or ductile which can be concluded from the graph.

  5. Stress intensity factor - Wikipedia

    en.wikipedia.org/wiki/Stress_intensity_factor

    In fracture mechanics, the stress intensity factor (K) is used to predict the stress state ("stress intensity") near the tip of a crack or notch caused by a remote load or residual stresses. [1] It is a theoretical construct usually applied to a homogeneous, linear elastic material and is useful for providing a failure criterion for brittle ...

  6. Compact tension specimen - Wikipedia

    en.wikipedia.org/wiki/Compact_tension_specimen

    The stress intensity factor at the crack tip of a compact tension specimen is [4] = [() / / + / / + /] where is the applied load, is the thickness of the specimen, is the crack length, and is the effective width of the specimen being the distance between the centreline of the holes and the backface of the coupon.

  7. Similitude - Wikipedia

    en.wikipedia.org/wiki/Similitude

    Similitude has been well documented for a large number of engineering problems and is the basis of many textbook formulas and dimensionless quantities. These formulas and quantities are easy to use without having to repeat the laborious task of dimensional analysis and formula derivation.

  8. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    Once the friction factors of the pipes are obtained (or calculated from pipe friction laws such as the Darcy-Weisbach equation), we can consider how to calculate the flow rates and head losses on the network. Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the ...

  9. Structural fracture mechanics - Wikipedia

    en.wikipedia.org/wiki/Structural_fracture_mechanics

    It uses methods of analytical solid mechanics, structural engineering, safety engineering, probability theory, and catastrophe theory to calculate the load and stress in the structural components and analyze the safety of a damaged structure. There is a direct analogy between fracture mechanics of solid and structural fracture mechanics: