Search results
Results from the WOW.Com Content Network
For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power. The word "raised" is usually omitted, and sometimes "power" as well, so 3 5 can be simply read "3 to the 5th", or "3 to the 5".
Power series. In mathematics, a power series (in one variable) is an infinite series of the form where an represents the coefficient of the n th term and c is a constant called the center of the series. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions.
List of mathematical series. This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. is a Bernoulli polynomial. is an Euler number. is the Riemann zeta function. is the gamma function. is a polygamma function. is a polylogarithm.
Exponential functions with bases 2 and 1/2. The exponential function is a mathematical function denoted by () = or (where the argument x is written as an exponent).Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras.
A formal power series is a special kind of formal series, of the form. where the called coefficients, are numbers or, more generally, elements of some ring, and the are formal powers of the symbol that is called an indeterminate or, commonly, a variable. Hence, power series can be viewed as a generalization of polynomials where the number of ...
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
For each integer n > 2, the function n x is defined and increasing for x ≥ 1, and n 1 = 1, so that the n th super-root of x, , exists for x ≥ 1. However, if the linear approximation above is used, then y x = y + 1 {\displaystyle ^{y}x=y+1} if −1 < y ≤ 0 , so y y + 1 s {\displaystyle ^{y}{\sqrt {y+1}}_{s}} cannot exist.
Since (y 2, z, x 2) form a primitive Pythagorean triple, they can be written z = 2de y 2 = d 2 − e 2 x 2 = d 2 + e 2. where d and e are coprime and d > e > 0. Thus, x 2 y 2 = d 4 − e 4. which produces another solution (d, e, xy) that is smaller (0 < d < x). As before, there must be a lower bound on the size of solutions, while this argument ...