enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linearization - Wikipedia

    en.wikipedia.org/wiki/Linearization

    Because differentiable functions are locally linear, the best slope to substitute in would be the slope of the line tangent to () at =. While the concept of local linearity applies the most to points arbitrarily close to x = a {\displaystyle x=a} , those relatively close work relatively well for linear approximations.

  3. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    This leads to the definition of the slope of the tangent line to the graph as the limit of the difference quotients for the function f. This limit is the derivative of the function f at x = a, denoted f ′(a). Using derivatives, the equation of the tangent line can be stated as follows: = + ′ ().

  4. Vertical tangent - Wikipedia

    en.wikipedia.org/wiki/Vertical_tangent

    Vertical tangent on the function ƒ(x) at x = c. In mathematics, particularly calculus, a vertical tangent is a tangent line that is vertical. Because a vertical line has infinite slope, a function whose graph has a vertical tangent is not differentiable at the point of tangency.

  5. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    This slope is determined by considering the limiting value of the slopes of the second lines. Here the function involved (drawn in red) is f(x) = x 3 − x. The tangent line (in green) which passes through the point (−3/2, −15/8) has a slope of 23/4. The vertical and horizontal scales in this image are different.

  6. Slope - Wikipedia

    en.wikipedia.org/wiki/Slope

    Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.

  7. Linear function (calculus) - Wikipedia

    en.wikipedia.org/wiki/Linear_function_(calculus)

    The coefficient a is called the slope of the function and of the line (see below). If the slope is a = 0 {\displaystyle a=0} , this is a constant function f ( x ) = b {\displaystyle f(x)=b} defining a horizontal line, which some authors exclude from the class of linear functions. [ 3 ]

  8. Linear approximation - Wikipedia

    en.wikipedia.org/wiki/Linear_approximation

    Tangent line at (a, f(a)) In mathematics , a linear approximation is an approximation of a general function using a linear function (more precisely, an affine function ). They are widely used in the method of finite differences to produce first order methods for solving or approximating solutions to equations.

  9. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    k = 1 is the tangent line to the right of the circles looking from c 1 to c 2. k = −1 is the tangent line to the right of the circles looking from c 2 to c 1. The above assumes each circle has positive radius. If r 1 is positive and r 2 negative then c 1 will lie to the left of each line and c 2 to the right, and the two tangent lines will ...