Search results
Results from the WOW.Com Content Network
This leads to the definition of the slope of the tangent line to the graph as the limit of the difference quotients for the function f. This limit is the derivative of the function f at x = a, denoted f ′(a). Using derivatives, the equation of the tangent line can be stated as follows: = + ′ ().
Assuming that the quantity (,) on the right hand side of the equation can be thought of as the slope of the solution sought at any point (,), this can be combined with the Euler estimate of the next point to give the slope of the tangent line at the right end-point. Next the average of both slopes is used to find the corrected coordinates of ...
As h approaches zero, the slope of the secant line approaches the slope of the tangent line. Therefore, the true derivative of f at x is the limit of the value of the difference quotient as the secant lines get closer and closer to being a tangent line: ′ = (+) ().
The graph of the linear approximation is the tangent line of the graph = at the point (, ()). The derivative slope f ′ ( c ) {\displaystyle f\,'(c)} generally varies with the point c . Linear functions can be characterized as the only real functions whose derivative is constant: if f ′ ( x ) = a {\displaystyle f\,'(x)=a} for all x , then f ...
The ratio in the definition of the derivative is the slope of the line through two points on the graph of the function , specifically the points (, ()) and (+, (+)). As h {\displaystyle h} is made smaller, these points grow closer together, and the slope of this line approaches the limiting value, the slope of the tangent to the graph of ...
The graph of =, with a straight line that is tangent to (,). The slope of the tangent line is equal to . (The axes of the graph do not use a 1:1 scale.) The derivative of a function is then simply the slope of this tangent line.
Then, from the differential equation, the slope to the curve at can be computed, and so, the tangent line. Take a small step along that tangent line up to a point A 1 . {\displaystyle A_{1}.} Along this small step, the slope does not change too much, so A 1 {\displaystyle A_{1}} will be close to the curve.
The slope field can be defined for the following type of differential equations ′ = (,), which can be interpreted geometrically as giving the slope of the tangent to the graph of the differential equation's solution (integral curve) at each point (x, y) as a function of the point coordinates.